Machine Learning Improves eCommerce Site Search

Smiling web developer working on PC in office

Ever wonder why most people are fascinated with psychics and fortune-tellers? They can foresee the future even though there is no scientific evidence. We think that if we know what’s coming, we can prepare for better or worse.

Businesses are no different. The capability to predict trends will help them optimize the supply chain, marketing, product sourcing, and customer acquisition. We feature eCommerce site search solutions that generate results fast for our clients and focus on using technology to achieve these results.

Fortunately, forecasting is within reach, not through a crystal ball but from analyzing the massive data through machine learning. But what is machine learning?

American computer pioneer, Arthur Lee Samuel came up with the phrase “machine learning” in 1959 to describe the ability of computers to self-learn without being programmed by humans. Mr. Samuel invented the first machine learning program, The Samuel Checkers-Playing Program, and proved that artificial intelligence (AI) was possible.

Is Machine Learning Taking Over?

Fast forward to today where machines are taking over. Not quite as ominous as Skynet in the Terminator movies, but the latest machine learning computers provide reliable predictions on many levels, in real-time, without human intervention.

Machine learning uses complex data analysis to improve performance and predictions without further programming.

It relies on massive data sources to identify patterns of predictability making it ideal for eCommerce. The extensive data of eCommerce businesses allow the computers to learn more about shoppers, their history, habits and make accurate behavioral predictions. The key to all of this, is that search marketing is working hard to drive the traffic on-site, but the conversion rate itself depends on their ability to find what they need after arriving; and that's exactly what machine-learning provides; an ability to modify in real-time the messaging to fit the users' intent and action queues.

Machine learning is here to stay. Ecommerce already uses powerful applications of machine learning technology. Businesses benefit from pricing optimization, customer support in the form of “chatbots,” fraud protection, supply and demand forecasting, and customer segmentation.

However, our focus on this article will be on machine learning site search because every shopper's journey begins with a search. Poor search results mean shoppers can’t find what they want and will go elsewhere.

The machines are taking over when it comes to on-site searching, but that’s a good thing as you’ll see.

Importance of Relevant Site Search

When customers begin a search on your site, they are in the late stages of the buying cycle with high intent to make a purchase. Ensuring that a customer finds exactly what they came for is essential to providing a quality customer experience and closing the sale.

Machine learning is instrumental in improving the relevance of each new search for every customer. 30% of visitors use the site search on eCommerce sites. In other words, quality search results mean better sales.

Visitors using search contributed 13.8% of the total revenue

The improvement to searching is not just limited to the exact match. Machine learning can display a variety of related products, increasing chances for additional sales.

How Machine Learning Improves eCommerce Site-Searches

Older, traditional site searches are called “recommender” or “product recommendation” searches. They have little imagination and deliver only results focused on the keyword. Some search apps can’t understand misspelled words returning any results at all. The customer must try again or go elsewhere.

In an SLI study, 73% of customers left a site after 2 minutes if they hadn’t yet found what they were searching for. Mobile users are even less patient.

Product searches enhanced with machine learning returned a wider choice of results to each query. The map products and interconnect them in new ways. For example, a search for “cat food” returns cat food wet, dry, mat, bowls, container, dispenser, lid, and canned.

Adding one of those extra keywords will yield more related choices. The program improves the search results based on the preferences clicked by customers. The latest statistic by a search engine marketing firm showed that results can jump from a 1% conversion rate to close to 8% on just this one application.

Ecommerce searches with machine learning combine the keyword plus data such as click rates, conversion rates, customer ratings, inventory, and margins. The search relevancy increases with each search multiplied by thousands of searches per day. From the standpoint of being a top website design agency, we feel that anything that can serve our customers better is worth exploring; especially when we talk about our customers' customers. That's the priority for all involved; to ensure a frictionless experience in the search process.

Not only can machine learning identify complex patterns throughout a catalog, but it can recognize behavioral models as well. Also known as predictive analytics, it is the science of knowing what is going on in a customer’s life motivating them to buy.

For example, if a shopper purchases an item of newborn baby clothes, that information could be set up to trigger coupons or promotions for all baby accessories targeted to that shopper.

With machine learning the customer has a wider variety of results, paving the way for larger purchases and impulse buying.

Other Ways eCommerce Has Harnessed Machine Learning

Machine learning has improved systems and information throughout the eCommerce environment. Chatbots have taken over human customer service roles by interacting with customers verbally. They can provide answers to FAQs and improve responses through self-teaching.

On-site merchandising has benefited from computer predictions based on customer buying and search habits. Merchandisers can increase the relevance of recommended and related products, staying ahead of the trend instead of being caught behind.

Ecommerce uses the data from machine learning for predictive marketing. They send push notices targeting specific customers for promotions. 80% of customers actually enjoy receiving these product recommendation notifications, and according to an eMarketer survey, these highly-targeted recommendations can have an open rate of 90%.

Machine Learning Improves Conversions

Machine learning provides the best in search relevance and usability for visitors

BigCommerce recommends that companies who focus on “leveraging the experience of shoppers currently on your site” has shown an increase of:

  • Store revenue by 300%,

  • Conversions by 150%

  • AOV (average order value) by 50%.

Fast growing eCommerce merchants can’t afford to offer online shoppers a mediocre site search. If your current eCommerce site search solution isn’t cutting it, your bottom line is probably at a mere 40% of its true potential.


With machine learning, it gets better over time. The algorithms and data improve automatically with every search. The benefits for eCommerce businesses are two-fold.

First, it drives sales by giving customers a better shopping experience personalized to the shopper’s needs and history, creating more upsell opportunities.

Customers get a more comprehensive yet targeted range of buying options. It’s just like directing someone to the fruit section of a grocery store if they are looking for fresh apples. They will typically buy more once they see the choices. And remember, branding agencies work to create the envelope itself, but technology is what pulls the right data in to show within that envelope of styling, fonts, and type kits.

Secondly, machine learning provides accurate forecasting data helping owners make better business decisions.

ML programs give greater control and insight over:

  • Forecasting product demand and trends

  • Customer segmentation

  • Accurate estimates for packing and shipping costs

  • Recognizing or avoiding inventory issues

  • Improving Marketing campaign targeting and effectiveness

It adds a new dimension of intelligence that both customers and management will appreciate. The machines may be taking over, but it’s for the better. Machine learning fulfills your business and customers’ needs in ways that you haven’t even imagined. 

Image Credit: Amazon /

The Man Who Works As An SEO Expert Is Working On A Laptop Surrounded By Green And Purple Colors, With A Text That Says 'SEO Checklist.'

Your SEO Checklist: How to Generate More Organic Traffic

Marketing Tips Search & PPC
The Shop Pay Interface Is Shown Over The Woman Who Works As A Shopify Expert, And The Text That Says 'Enhancing Shopify Checkout For Conversions.'

6 Shopify Checkout Best Practices For Increased Conversions

Marketing Tips Shopify / Plus / POS
The Two Customer Retention Experts Are Shown Over The Purple Color And The Text That Says 'Customer Retention Agencies.

The Role & Functions of Customer Retention Agencies

Digital Marketing eCommerce
The Woman Who Works As An SMS Marketing Expert Is Shown In A Red Circle, Overlaid On The Text That Says 'Unlocking Customer Loyalty'.

Bringing Customers Back to Buy With Yotpo SMS & Loyalty

Business Software eCommerce Email & SMS
The Man Who Works As Google Analytics Expert Is Shown Over The Orange Color And The Text That Says 'Top Techniques To Maximize Efficiency'.

Boost Efficiency With 3 Time-Saving Google Analytics 4 Tips

Digital Marketing Marketing Tips
The Laptop With A Twenty Percent Discount For Monthly Subscription Is Displayed On The Screen Over A Black Color And Purple Frame, Along With The Text That Says 'Performance Max Campaigns'.

Google Performance Max: A Powerful Cross-Channel Advertising Tool

Digital Marketing Marketing Tips Search & PPC
Let's Talk